Membrane excitability, weakness, and fatigue.
نویسنده
چکیده
A failure in membrane excitability, defined as an inability of the sarcolemma and T-tubule to translate the neural discharge command into repetitive action potentials, represents an inviting cause of mechanical disfunction in both health and disease. A failure at this level would precipitate a disturbance in signal transmission between the T-tubule and the calcium release channels of the sarcoplasmic reticulum, resulting in reduced release of Ca2+, lower cytosolic free Ca2+ levels, and depressed myofibrillar activation and force generation. The ability of the sarcolemma and T-tubules to conduct repetitive action potentials is intimately dependent on active transport of Na+ and K+ following an action potential. The active transport of these cations is mediated by the Na+-K+-ATPase, an integral membrane protein that uses the energy from the hydrolysis of 1 ATP to transport 3 Na+ out of the cell and 2 K+ into the cell. A failure to recruit sufficient Na+-K+-ATPase activity during contractile activity could result in a rundown of the transmembrane gradients for Na+ and K+, leading to a loss of membrane excitability. The Na+-K+-ATPase activity depends on the amount and isoform composition of the protein, substrate availability, and acute regulatory factors. Each of these factors is examined as a potential cause of altered activation of the Na+-K+-ATPase activity and loss of membrane excitability in fatigue. Regular exercise represents a potent stimulus for upregulating Na+-K+-ATPase levels and for increasing the ability for cation transport across the sarcolemma and T-tubule membrane. As such, training may be a valuable tool in the management of fatigue in health and disease.
منابع مشابه
Contractile properties of the abductor digiti minimi muscle in paramyotonia congenita.
In two subjects with paramyotonia congenita the isometric torque generated by the abductor digiti minimi and the surface EMG recorded over ADM decreased during prolonged or repetitive contractions, whether these were voluntarily or electrically induced. Isometric twitch times did not alter significantly during this muscle fatigue. Cooling greatly accelerated the fatiguing process. It is suggest...
متن کاملActivity-dependent excitability changes suggest Na+/K+ pump dysfunction in diabetic neuropathy.
The present study was undertaken to evaluate the role of Na(+)/K(+) pump dysfunction in the development of diabetic neuropathy (DN). Nerve excitability techniques, which provide information about membrane potential and axonal ion channel function, were undertaken in 15 patients with established DN and in 10 patients with diabetes who had no evidence of neuropathy (DWN). Excitability parameters ...
متن کاملDeterminants of surface membrane and transverse-tubular excitability in skeletal muscle: implications for high-intensity exercise
The fatigue of high-intensity exercise is now believed to reside primarily within the excitation–contraction coupling processes associated with the plasma membrane of skeletal muscle (sarcolemm) and calcium-mediated events leading to myofilament sliding. This paper summarizes recent developments and advances in the identification of factors that contribute to changes in sarcolemmal excitability...
متن کاملThe importance of limitations in aerobic metabolism, glycolysis, and membrane excitability for the development of high-frequency fatigue in isolated rat soleus muscle.
We investigated the role of limitations in aerobic metabolism, glycolysis, and membrane excitability for development of high-frequency fatigue in isolated rat soleus muscle. Muscles mounted on force transducers were incubated in buffer bubbled with 5% CO(2) and either 95% O(2) (oxygenated) or 95% N(2) (anoxic) and stimulated at 60 Hz continuously for 30-120 s or intermittently for 120 s. Cyanid...
متن کاملProtection of muscle membrane excitability during prolonged cycle exercise with glucose supplementation.
To determine if exercise-induced depressions in neuromuscular function are altered with oral glucose supplementation, 15 untrained participants (Vo2 peak = 45 +/- 2 ml x kg(-1) x min(-1), mean +/- SE) performed prolonged cycle exercise at approximately 60% Vo2 peak on two occasions: without glucose supplementation (NG) and with oral glucose supplementation (G). The oral G began at 30 min of exe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Canadian journal of applied physiology = Revue canadienne de physiologie appliquee
دوره 29 3 شماره
صفحات -
تاریخ انتشار 2004